Parasites found in archaeological material may contribute to understand climate changes in the past. An example is the find of Trichuris eggs in rodent (Kerodon rupestris) coprolites collected in archaeological layers dated from 30,000 years to 8,000 years BP (before present) in Serra da Capivara National Park, Brazilian northeast. It was proposed that this parasite disappeared from this host because of climate changes occurred in the region 8,000 years ago. Evidences were published by our laboratory in late 1980’s and early 1990’s (Araújo et al. 1993; Ferreira et al. 1991).

Here we report the first record of Trichurid eggs in Kerodon rupestris (Rodentia, Caviidae) in present living animals. Dried feces were collected during a field work in Serra das Confusões National Park and rehydrated by immersion in a 0.5% Na3PO4 solution for 72 hours (Callen & Cameron 1960). Parasitological examination was performed using the sedimentation technique (Lutz 1919).

Trichuris eggs measured 62-70 x 32-37 µm, compatible with those found in archaeological material. An unidentified Nematoda Ascarid eggs, Strongyloides ferreirai (Araújo et al. 1989) eggs, and larva were also found. Eimeria sp cysts were also identified on feces. Identification of the Trichuris species was not possible based only on the eggs found. As a probable unknown species, capture of hosts is needed to search for adult worms in the intestine.

Serra das Confusões National Park presents more humid conditions comparing to those of Serra da Capivara. This might explain the permanency of this parasite in Kerodon rupestris in the region.

It is important to note that wildlife helminth studies are an interesting mean to understand environment conditions and climate changes along years. Combining paleoparasitological studies with recent data, a frame of parasitism evolution can be achieved.